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Abstract 

Over forty years, there have been major efforts to aim at understanding the properties of 

surfaces, structure, composition, dynamics on the molecular level and at developing the 

surface science of heterogeneous and homogeneous catalysis. Since most catalysts 

(heterogeneous, enzyme and homogeneous) are nanoparticles, colloid synthesis methods 

were developed to produce monodispersed metal nanoparticles in the 1-10 nm range and 

controlled shapes to use them as new model catalyst systems in two-dimensional thin 

film form or deposited in mezoporous three-dimensional oxides. Studies of reaction 

selectivity in multipath reactions (hydrogenation of benzene, cyclohexene and 

crotonaldehyde) showed that reaction selectivity depends on both nanoparticle size and 

shape.  The oxide-metal nanoparticle interface was found to be an important catalytic site 

because of the hot electron flow induced by exothermic reactions like carbon monoxide 

oxidation. 
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This series of international symposia focuses on catalysis.  The field of 

catalysis is like an onion (Figures 1a and 1b), the outer shell represents technology, 

process control and reactor design; the layer in the middle where synthesis and 

fabrication of catalysts and the techniques and instrumentation to characterize catalysts [1, 

2] are located along with studies of deactivation and regeneration and of course 

macroscopic kinetics.  In the core of this onion are molecular studies to understand the 

molecular mechanisms of structure bonding and dynamics [3-5], how the three types of 

catalyst systems (enzyme, heterogeneous and homogeneous) work.  It is this molecular 

core that I aim to address in this Symposium. 

 

The common property of all three catalyst systems that is most apparent is that 

they are all nanoparticles.  For example, Cytochrome C, which is one of the over 3000 

enzymes that functions in the human body (Figure 2a) is 4 nm in size with its protein 

shell wrapped around it ,and its molecular weight is 12,000 daltons [6].  The size of its 

active site is 1.4 nm.  A typical homogeneous catalyst used for olefin polymerization is a 

so-called single site catalyst with an active site that is a titanium ion surrounded by 

ligands (Figure 2b), which is 1.6 nm in size.  This nanosize molecule produces a million 

C-C bonds as it makes polypropylene [7].  The heterogeneous catalysts such as platinum 

nanoparticles (Figure 2c) are between 1-10 nm in size [8, 9].  In the figure we show a 

method to synthesize these nanodispersed nanoparticles with the desired size and shape 

that may be cubic or cuboctahedra [10]. 

 



The 21st Century challenge for catalysis is to achieve the highest possible 

reaction selectivity for catalyst-based chemical processes [11-13].  We have to understand 

for multipath reactions where several reaction channels to produce different molecules 

are all thermodynamically possible, to make only the desired molecule instead of a 

mixture of the products [14].  Although the molecular mechanisms for reactions that form 

only one product (for example ammonia synthesis or ethylene hydrogenation) are quite 

well understood, the small changes in potential barrier height, that control which product 

molecule forms in multipath reactions, is not well understood. 

 

In heterogeneous catalysis we know of four molecular ingredients that control 

catalytic activity and selectivity [15];  1) reaction intermediates that form and determine 

which way the reaction is going; 2) surface mobility of adsorbate and substrate during the 

reaction; 3)  surface structure and 4) charge transport.  Sum frequency generation 

vibrational spectroscopy [16, 17]shows the reaction intermediates detected during ethylene 

hydrogenation and cyclohexene hydrogenation and dehydrogenation (Figure 3).  There 

are three species (ethylidyne, di-σ-bonded-ethylene and π-bonded ethylene) that are 

visible on the platinum surface [18].  Out of the three, π-bonded ethylene is the most 

weakly adsorbed, and that is the one that turns over, the other two species are stagnant 

spectators during the reaction turnover.  For cyclohexene hydrogenation/dehydrogenation 

it is 1,3-cyclohexadiene, 1,4-cyclohexadiene and π-allyl c-C6H9 that are all visible in 

various temperature regimes [19]. The mobility of the adsorbed species during catalytic 

turnover can be shown with the high pressure scanning tunneling microscopy technique 

(Figure 4) [20].  Under high turnover conditions the adsorbed species are invisible to the 



scanning tunneling microscope that scans the surface at a speed of about 100 Å per 

millisecond.  The species on the surface of the active catalyst are moving too fast to be 

detectible by high pressure STM [21, 22].  When we poison the reaction, for example by 

adsorbing carbon monoxide, we see ordered structures, which are readily imaged by 

STM, but the catalytic turnover stopped.  In several reactions that we have studied the 

adsorbate mobility on the catalytically active surface is an important ingredient of 

catalytic activity, while the lack of mobility stops the catalytic reaction.  The catalyst 

surface under high pressure conditions rapidly restructures as is shown in Figure 5.   The 

(110) surface restructures differently when hydrogen or oxygen or carbon monoxide are 

adsorbed [23]indicating that the surface chemistry also controls the surface structure of the 

substrate catalyst that is stable under reaction conditions. 

 

Our research in this field moved from platinum single crystal surfaces as 

model catalysts to nanoparticles in two dimensions or in three dimensional arrays [1] 

(Figure 6).  In two-dimensional catalytic systems we use a Langmuir-Blodgett technique 

to disperse the nanoparticles and grow on a vapor of oxide support a two-dimensional 

higher or lower density nanoparticle assembly [10, 24] (Figure 7).  If we want to place the 

nanoparticles into a mesoporous three-dimensional framework we use sonication or 

synthesize the mesoporous solid around the nanoparticles in solution [25, 26].   

 

For two-dimensional platinum nanoparticle films, which are assembled using 

the Langmuir-Blodgett technique, we find that cubic platinum nanoparticles behave like 

the single crystal (100) crystal face, and form only one product, cyclohexane by benzene 



hydrogenation (Figure 8) [13].  If we have hexagonal platinum nanoparticles we produce 

both cyclohexane and cyclohexene, just like the single crystal (111) crystal face.  If we 

use platinum nanoparticles at different sizes in a three-dimensional framework of 

mezoporous silica, we find that the formation of cyclohexene by hydrogenation of 

cyclohexene and the dehydrogenation to benzene are particle size dependent, as shown in 

Figure 9 [26].  The reason for this is that the activation energy of dehydrogenation of 

cyclohexene to benzene is increasing with particle size.  Similar correlation is found for 

crotonaldehyde selective hydrogenation to either crotyl alcohol or butyraldehyde (Figure 

10), where the selectivity of both of these products is particle size sensitive.  Finally, we 

find that the oxide-metal interfaces, that formed as metal nanoparticles are deposited on 

oxide supports, are also important active sites[27, 28].  The reason for this is that during 

exothermic surface reactions hot electrons are produced in the metal that have enough 

mean free path to make their way to the oxide interfaces.  We have studied CO oxidation 

for this purpose[29-32].  The hot electrons can be collected after passing the Schottky 

barrier that is present at the metal-oxide interface[33-36].  Figure 11 shows the chemical 

reaction induced current (chemicurrent) has the same activation energy as the turnover 

rate of CO oxidation, indicating that the chemicurrent and the turnover rates are 

correlated[30, 32].  That is, the charge transport occurring at oxide-metal interfaces 

competes in producing chemistry with the reactions that occur only on metal surfaces.  

 

There are major advances in single molecule enzyme chemistry that permits 

detection of molecular motion of the enzyme (conformational dynamics).  We heard the 

talk of Professor Sunny Xie on this subject at this Symposium[37].  Homogeneous catalyst 



can be anchored to solid supports (talk by Professor Jones) without change of the 

chemical activity as compared to in solution as long as they exhibit mobility that is not 

inhibited in the molecules that are tethered to silica. 

 

In order to directly compare the three fields of catalysis at the molecular level 

we have to design experiments that investigate the three types of catalysts under the same 

experimental condition.  I suggest studies of catalysis at 300 K and in water.  These 

conditions are the natural habitat of enzymes while we should be able to probe 

heterogeneous catalysts that are usually employed at higher temperatures and also 

homogeneous catalysts that are utilized in organic solvents under enzyme-friendly 

experimental conditions. 

 

Molecular studies of catalysts promises to be exciting for many decades to 

come to produce selective chemistry, perhaps using hybrid systems that share the 

desirable features of enzyme, heterogeneous and homogeneous catalyst systems. 
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Figure Captions 

 

Figure 1 a)  Layers of catalysis, from technologies to molecular science; 

b)  The molecular core of catalysis science 

 

Figure 2 a)  The Cytochrome C molecule 

b) Titanium-based single site homogeneous polymerization catalyst  

c) Platinum nanoparticle monodispersed catalysts of 1-8 nm size 

and well-controlled cubic or cuboctahedra shapes 

 

Figure 3 Reaction intermediates detected by sum frequency generation (SFG) 

vibrational spectroscopy during ethylene hydrogenation and 

cyclohexene hydrogenation/dehydrogenation under catalytic reaction 

conditions on the Pt(111) surface. 

 

Figure 4 STM pictures during cyclohexene hydrogenation/dehydrogenation 

exhibiting adsorbate mobility that is faster than the scanning speed 

of the STM tip.  When the catalytic reaction is poisoned the STM 

image is ordered indicating lack of mobility. 

 

Figure 5 Scanning tunneling microscopy (STM) pictures of the reconstructed 

(110) crystal face of platinum when exposed to hydrogen, oxygen or 

carbon monoxide at high pressures. 



Figure 6 Transition from catalytic studies on model surfaces of metal single 

crystals to metal nanoparticles that are deposited as two-dimensional 

films or dispersed on three-dimensional mezoporous supports. 

 

Figure 7 a)  Deposition of two-dimensional nanoparticle films by the 

                                       Langmuir-Blodgett technique. 

b) Nanoparticles encapsulated by mezoporous silica (SBA-15) 

support that grows around the platinum nanoparticles in solution. 

 

Figure 8 Benzene hydrogenation over cubic and hexagonal shaped platinum 

nanoparticles and (100) and (111) crystal faces of platinum.  Both 

the nanoparticles and the crystal faces form two products 

(cyclohexene and cyclohexane) over the hexagonal faces and only 

one product (cyclohexane) over cubic faces. 

 

Figure 9 Platinum nanoparticle size dependence of selectivity of cyclohexene 

hydrogenation/dehydrogenation. 

 

Figure 10 Platinum nanoparticle size dependence of selectivity of 

crotonaldehyde hydrogenation. 

 



Figure 11 Hot electron charge transport at oxide-metal interfaces by 

simultaneous detection of turnover rate and electron current during 

carbon monoxide oxidation using a Pt/TiO2 catalytic nanodiode. 
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Figure 7 a and 7 b 
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